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Abstract
We prove an approximation result showing how operators of the type
−� − γ δ(x − �) in L2(R2), where � is a graph, can be modelled in the
strong resolvent sense by point-interaction Hamiltonians with an appropriate
arrangement of the δ potentials. The result is illustrated on finding the spectral
properties in cases when � is a ring or a star. Furthermore, we use this method
to indicate that scattering on an infinite curve � which is locally close to a loop
shape or has multiple bends may exhibit resonances due to quantum tunnelling
or repeated reflections.

PACS numbers: 03.65.Nk, 03.65.Ge, 02.30.Tb, 73.63.−b

1. Introduction

The main aim of this paper is to discuss a limiting relation between two classes of generalized
Schrödinger operators in L2(R2). One class is measure-type perturbations of the Laplacian,
in particular, we will be interested in potentials which are negative multiples of the Dirac
measure supported by a finite graph � ⊂ R

2, in other words, they are formally given by the
expression

−� − γ δ(x − �) (1.1)

with some γ > 0. We are going to show that such operators can be approximated in the strong
resolvent sense by families of point-interaction Hamiltonians [AGHH] with two-dimensional
δ potentials suitably arranged.

Stated in this way the problem is an interesting mathematical question; the indicated
result will represent an extension of the approximation theorem derived in [BFT] to the two-
dimensional situation, which is not straightforward because properties of the δ potentials are
dimension-dependent. In addition, we have a strong physical motivation coming from the
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fact that Hamiltonians of the type (1.1) are good models of various graph-type nanostructures
which in distinction to the usual description [KS] take quantum tunnelling into account—see
[Ex1] for a bibliography to this problem.

To investigate such models one has to find spectral properties of the operator (1.1) for
various shapes of �. This is in general a complicated task even if the original PDE problems
are reformulated by means of the generalized Birman–Schwinger principle [BEKŠ] into the
solution of an appropriate integral equation. On the other hand, the spectral problem for point-
interaction Hamiltonians is reduced in a standard way to the solution of an algebraic equation
with coefficients containing values of the free Green function. Hence an approximation of the
mentioned type would be of practical importance; our second aim is to illustrate this aspect of
the problem with examples.

Let us describe briefly the contents of this paper. In the next section, we collect the
needed preliminaries stated in a way suitable for further argument. In section 3 we formulate
and prove our main result, which is the approximation indicated above. In the following
two sections we discuss examples of two simple graph classes. The first are graphs of the
form of a ring, full or open. In this case the spectrum of the operator (1.1) can be found by
mode matching [ET] which enables us to compare the approximation with the ‘exact’ result,
in particular, to assess the rate of its convergence. In contrast, in section 5 we discuss star-
shaped graphs. Here an alternative method for numerical solution of the spectral problem is
missing; however, we can derive several conclusions for (an infinite) star analytically and show
how the approximation results conform with them. Computations of this type were already
performed in [EN] but the number of points used there was too small to provide a reasonable
approximation.

In the last section, we address another question which is more difficult and no analytical
results are available presently. It concerns the scattering problem on infinite leaky graphs
with asymptotically straight ‘leads’. On a heuristic level, it is natural to expect that the
states from the negative part of the continuous spectrum can propagate being transversally
confined to the graph edges, hence a nontrivial geometry should yield an N × N on-shell
scattering matrix, where N is the number of leads. This remains to be proved, however, and
even more difficult will be to compute the S-matrix mentioned above in terms of the graph
geometry.

For simplicity we will restrict ourselves to the simplest case when � is an infinite
asymptotically straight curve, i.e. N = 2, without self-intersections. One natural conjecture
is that if the distance between the curve points is small somewhere so that � is close to a loop
shape locally, the system can exhibit resonances due to quantum tunnelling. On the other
hand, simple bends are unlikely to produce distinguished resonances; the reason is that the
transverse δ coupling in (1.1) has a single bound state, hence there is no analogue here to
higher thresholds which give rise to resonances in bent hard-wall tubes [DEM]. To support
these conjectures, we have employed the so-called L2 approach to resonances, which was
in the one-dimensional case set on a rigorous ground in [HM]. Specifically, we study the
spectrum of a finite segment of � as a function of the cut-off position. In the first case we
find in this dependence avoided eigenvalue crossings, the more narrow, the smaller the gap to
tunnel is, while no such effect is seen in the second case.

On the other hand, tunnelling between arcwise distant points of the graphs is not the only
source of resonances. To illustrate this claim, we analyse in our last example a Z-shaped
graph with two sharp bends separated by a line segment. We again find avoided crossings the
widths of which vary widely as functions of the bending angle. This provides an indirect but
convincing indication that the above-described on-shell S-matrix for a bent curve in the shape
of a broken line is nontrivial.
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2. Preliminaries

2.1. Generalized Schrödinger operators

We start with the definition of Schrödinger operators of the form −� − γm in L2(R2), where
m is a finite positive measure on the Borel σ -algebra of �, which is assumed to be a non-empty
closed subset of R

2 and also the support of the measure m. Furthermore, γ is a bounded
and continuous function, acting from � to R+. We suppose that the measure m belongs to
the generalized Kato class, in the two-dimensional case meaning that the following condition
holds,

lim
ε→0

sup
x∈R

2

∫
B(x,ε)

| log(|x − y|)|m(dy) = 0 (2.1)

where B(x, ε) denotes the circle of radius ε centred at x.
Due to the fact that the measure m belongs to the Kato class, for each a > 0 there exists

b ∈ R such that any ψ from the Schwartz space S(R2) satisfies the inequality∫
R

2
|ψ(x)|2m(dx) � a

∫
R

2
|∇ψ(x)|2 dx + b

∫
R

2
|ψ(x)|2 dx (2.2)

as was proved in the paper [SV]. Since S(R2) is dense in H 1(R2) we can define a bounded
linear transformation

Im : H 1(R2) �→ L2(m)

Imψ = ψ ∀ψ ∈ S(R2).

Using this transformation, inequality (2.2) can be extended to the whole H 1(R2) with the
function ψ on the lhs replaced by Imψ . By employing the KLMN theorem, see [RS, theorem
X.17], we conclude that the quadratic form qγm given by

D(qγm) := H 1(R2)
(2.3)

qγm(ψ, φ) :=
∫

R
2
∇ψ̄(x)∇φ(x) dx −

∫
R

2
Imψ̄(x)Imφ(x)γ (x)m(dx)

is lower semi-bounded and closed in L2(R2). Hence there exists a unique self-adjoint operator
Hγm associated with the form qγm.

The described definition applies to a more general class of measures than we need here. If
� is a graph consisting of a locally finite number of smooth edges meeting at nonzero angles,
i.e. having no cusps, there is another way to define Hγm, namely via boundary conditions
imposed on the wavefunctions. To this aim, consider first the operator Ḣ γm acting as

(Ḣ γmψ)(x) = −(�ψ)(x) x ∈ R
2\�

for any ψ of the domain consisting of functions which belong to H 2(R2\�), and which are
continuous at � with the normal derivatives having there a jump,

∂ψ

∂n+
(x) − ∂ψ

∂n−
(x) = −γψ(x) x ∈ �. (2.4)

Then it is straightforward to check that Ḣ γm is e.s.a. and by Green’s formula it reproduces the
form qγm on its core, so its closure may be identified with Hγm defined above.

An important tool to analyse spectra of such operators is the generalized Birman–
Schwinger method. If k2 belongs to the resolvent set of Hγm we put Rk

γm := (Hγm − k2)−1.
The free resolvent Rk

0 is defined for Im k > 0 as an integral operator with the kernel

Gk(x − y) = i

4
H

(1)
0 (k|x − y|). (2.5)
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Now we shall use Rk
0 to define three other operators. For the sake of generality, suppose that

µ, ν are positive Radon measures on R
2 with µ(x) = ν(x) = 0 for any x ∈ R

2. In our case
they will be the measure m on � and the Lebesgue measure dx on R

2 in different combinations.
By Rk

ν,µ we denote the integral operator from L2(µ) to L2(ν) with the kernel Gk , i.e.

Rk
ν,µφ = Gk ∗ φµ

holds ν-a.e. for all φ ∈ D
(
Rk

ν,µ

) ⊂ L2(µ).

With this notation one can express the resolvent Rk
γm as follows [BEKŠ]:

Theorem 2.1. Let Im k > 0. Suppose that I − γRk
m,m is invertible and the operator

Rk := Rk
0 + γRk

dx,m

[
I − γRk

m,m

]−1
Rk

m,dx

from L2(R2) to L2(R2) is everywhere defined. Then k2 belongs to ρ(Hγm) and (Hγm−k2)−1 =
Rk .

The invertibility hypothesis is satisfied for all sufficiently large negative k2 because for
such a k2 the operator norm of γRm,m(z) acting in L2(m) is less than 1 (see again [BEKŠ]),
and a similar result can be proved for the operator norm in L∞(m) following [BFT]. Thus
from now on we consider k2 < 0 such that both these norms are less than one.

For later considerations it is useful to rewrite operator Hγm = −� − γm in the form
−� − 1

α
µ, where we have introduced

µ = γm∫
γm

α = 1∫
γm

. (2.6)

Since function γ acquires only non-negative values and m is a positive measure, α is a positive
number. The resolvent reads

Rk
γm = Rk

0 + Rk
dx,µ

(
1 − 1

α
Rk

µ,µ

)−1 1

α
Rk

µ,dx. (2.7)

It can be rewritten alternatively as

(Hγm − z)−1ψ = Rk
0ψ + Rk

dx,µσ (2.8)

where ψ ∈ L2(R2) and σ ∈ L2(µ) represents the unique solution to the equation

ασ − Rk
µ,µσ = Rk

µ,dxψ µ-a.e. (2.9)

Since Rk
0ψ belongs to H 2(R2), using Sobolev’s embedding theorem we conclude that it has a

bounded and continuous version, and therefore σ also has a representative which is bounded
and continuous on the set Sγ := {x ∈ � : γ (x) 	= 0}.

2.2. Schrödinger operators with point interactions

Consider a discrete and finite subset Y ⊂ � and the positive constant α defined above. As
is well known we cannot regard the operator HY,α with the interaction supported by Y as
before, i.e. as ‘−� + measure’. Instead, we define this operator via its domain: each function
ψ ∈ D(HY,α) behaves in the vicinity of a point a ∈ Y as follows,

ψ(x) = − 1

2π
log |x − a|L0(ψ, a) + L1(ψ, a) + O(|x − a|) (2.10)

where the generalized boundary values L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2π |Y |αL0(ψ, a) = 0 (2.11)
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for any a ∈ Y with |Y | := �(Y ); for a justification of this definition and further properties of
the operators HY,α see, e.g., [AGHH, chap II.4].

The form (2.11) which we have chosen is adapted for the indicated use of these operators
in the approximation. In particular, the coupling parameter |Y |α depends linearly on the
cardinality of the set Y. However, it is important to stress that our problem differs substantially
from its three-dimensional analogue considered in [BFT] where no sign of α played a preferred
role. In the two-dimensional setting the coupling parameter tends to ±∞ in the limit of weak
and strong couplings, respectively. Consequently, we will be able to find an approximation
for operators (1.1) with attractive interactions only.

The Krein formula for the resolvent (HY,α − z)−1 is the basic ingredient in the spectral
analysis of the point-interaction Hamiltonians.

Theorem 2.2. Let k2 < 0 and �Y,α(k2) be the matrix |Y | × |Y | given by

�Y,α(k2; x, y) = 1

2π

[
2π |Y |α + log

(
ik

2

)
+ CE

]
δxy − Gk(x − y)(1 − δxy) (2.12)

where CE is the Euler constant. Suppose that this matrix is invertible. Then k2 ∈ ρ(HY,α)

and we have

(HY,α − k2)−1ψ(x) = Rk
0ψ(x) +

∑
y,y ′∈Y

[�Y,α(k2)]−1(y, y ′)Gk(x − y)Rk
0ψ(y ′) (2.13)

for any ψ ∈ L2(R2).

One can see easily that the matrix �Y,α(k2) is invertible for sufficiently large negative
k2 = −κ2. Indeed, the diagonal part is dominated by the term 1

2π
log κ , while the non-diagonal

elements vanish as κ → ∞, see the asymptotic formula [AS, 9.2.7] for the Hankel function
H

(1)
0 . In view of our special choice of the coupling, an alternative way to make the matrix

�Y,α invertible is to take a sufficiently large set Y.

Lemma 2.3. Let Im k > 0 and (Yn)n∈N be a sequence of non-empty finite subsets of Sγ such
that |Yn| → ∞ as n → ∞ and the following inequality holds:

sup
n∈N

1

|Yn| sup
x∈Yn

∑
y∈Yn\{x}

Gk(x − y) < α. (2.14)

Then there exists a positive C and n0 ∈ N such that the matrix �Yn,α(k2) is invertible and∥∥∥∥∥
(

1

|Yn|�Yn,α(k2)

)−1
∥∥∥∥∥

2,2

< C (2.15)

holds for all n � n0. Here ‖ · ‖p,q means the norm of the map from �p to �q; the specification
is superfluous here but it will be useful in the following.

Proof. Let us first decompose the matrix 1/|Yn|�Yn,α(k2) into the diagonal and non-diagonal
parts, Dn and Rn, respectively. For n being large enough the diagonal matrix Dn is invertible
and its operator norm in (C|Yn|, ‖ · ‖2) converges to α as n → ∞. Due to the strict inequality
in the hypothesis there is an a < α such that the inequality (2.14) holds with α replaced by
a. Then the Schur–Holmgren bound [AGHH, app C] yields ‖Rn‖2,2 � a < α, which in turn
implies that the matrix sum Dn + Rn is invertible for a sufficiently large n. �

In analogy with the expression (2.8) it is possible to rewrite Krein’s formula (2.13) in the
form

(HY,α − k2)−1ψ(x) = Rk
0ψ(x) +

∑
y∈Y

Gk(x − y)qy (2.16)
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where qy, y ∈ Yn solve the following system of equations,

1

2π

[
2π |Y |α + log

(
ik

2

)
+ CE

]
qy −

∑
y ′∈Y,y ′ 	=y

Gk(y − y ′)qy ′ = Rk
0ψ(y) (2.17)

for all y ∈ Yn.

3. Approximation by Schrödinger operators with point interactions

With the above preliminaries we can proceed to the main goal—we will prove that for a chosen
generalized Schrödinger operator with an attractive interaction one can find an approximating
sequence of point-potential Schrödinger operators under requirements which will be specified
below.

The assumption about positions of the point potentials is obvious—loosely speaking, as
the sites of potentials are getting denser in the set �, they must copy the measure µ. Then
we have to specify the coupling-constant behaviour in the approximating operators. We have
already mentioned that in the analogous situation in dimension three the coupling constants
scale by [BFT] linearly with the number |Y | of point potentials, suggesting the same behaviour
here. This requires an explanation, because it is well known that the coupling constants are
manifested differently in dimensions three and two; just consider a pair of point potentials and
let their distance vary.

To get a hint that the scaling behaviour for the approximation remains nevertheless the
same, consider an infinite straight polymer as in [AGHH, III.4], denote the coupling constant
by α and the period by l0n

−1. The threshold of the continuous spectrum is given as the unique
solution E = −κ2 to the implicit equation

α = n

2l0κ
− 1

2π
log

2πn

l0
+ lim

M→∞

M∑
m=1

(
1√

(2πm)2 + (κl0/n)2
− 1

2πm

)
. (3.1)

Now let the number n increase. If we want to keep the solution κ preserved as n → ∞,
then α must grow linearly with n; recall that for α > 0 this means that the individual point
interactions are becoming weaker. This motivates the choice of the coupling constants in the
form |Y |α which we made in the boundary condition (2.11).

Now we can prove the announced approximation result.

Theorem 3.1. Let � be a closed and non-empty subset of R
2 and let m be a finite positive

measure on the Borel σ -algebra of � with supp m = �, which belongs to the Kato class. Let
γ : � → R+ be a nontrivial bounded continuous function. Choose k with Im k > 0 such
that equation (2.9) has a unique solution σ which has a bounded and continuous version on
Sγ := {x ∈ � : γ (x) 	= 0}. Finally, suppose that there exists a sequence (Yn)

∞
n=1 of non-empty

finite subsets of Sγ such that |Yn| → ∞ and the following relations hold

1

|Yn|
∑
y∈Yn

f (y) →
∫

f dµ (3.2)

for any bounded continuous function f : � → C,

sup
n∈N

1

|Yn| sup
x∈Yn

∑
y∈Yn\{x}

Gk(x − y) < α (3.3)

sup
x∈Yn

∣∣∣∣∣∣
1

|Yn|
∑

y∈Yn\{x}
σ(y)Gk(x − y) − (

Rk
dx,µσ

)
(x)

∣∣∣∣∣∣ → 0 (3.4)



Leaky quantum graphs: approximations by point-interaction Hamiltonians 10179

for n → ∞. The operators HYn,α and Hγm defined in section 2 then satisfy the relation
HYn,α → Hγm in the strong resolvent sense as n → ∞.

Proof. Since both Hamiltonians HYn,α and Hγm are self-adjoint it is sufficient to prove the
weak convergence, i.e. to check that

In = (φ, (HYn,α − z)−1ψ − (Hγm − z)−1ψ)L2(R2) → 0 as n → ∞
holds for arbitrary ψ, φ ∈ L2(R2). Using formulae (2.8) and (2.16) for the resolvents we
arrive at

In =
∑
y ′∈Yn

1

|Yn|
(
Rk

0 φ̄
)
(y ′)[|Yn|qy ′ − σ(y ′)] +

1

|Yn|
∑
y ′∈Yn

(
Rk

0 φ̄
)
(y ′)σ (y ′)

−
∫ (

Rk
µ,dxφ̄

)
(y)σ (y)µ (dy).

The sum of the last two terms tends to zero as n → ∞, which follows from the hypothesis
(3.2). Since the function Rk

0 φ̄ is continuous and bounded, as we have already mentioned, it is
enough to prove the following claim,

1

|Yn| ‖v
(n)‖1 → 0 as n → ∞

for the �1 norm, where (v(n))y := |Yn|qy − σ(y), y ∈ Yn.
To this end, we employ equations (2.9) and (2.17) and substitute the term Rk

µ,dxψ in
one equation from the other. Equation (2.9) holds µ-a.e., so we must consider continuous
representatives of the functions involved here. In this way we get

ασ(y) − (
Rk

µ,µσ
)
(y) = 1

2π

[
2πα(y)|Yn| + log

(
ik

2

)
+ CE

]
qy −

∑
y ′∈Yn,y ′ 	=y

Gk(y − y ′)qy ′ .

(3.5)

By adding two extra terms to both sides of the equation we arrive at

1

|Yn|
∑
y ′∈Yn

[�Yn,α(k2; y, y ′)(qy ′ |Yn| − σ(y ′))] = − log(ik/2) + CE

2π |Yn| σ(y)

+
1

|Yn|
∑

y ′∈Yn,y ′ 	=y

Gk(y − y ′)σ (y ′) −
∫

Gk(y − y ′)σ (y ′)µ (dy ′).

We denote the vector on the rhs by w(n), then the previous formula reads (1/|Yn|)�Yn,α(z)v(n) =
w(n). Since we assume that inequality (3.3) holds, lemma 2.3 is applicable here. Therefore,
there exists n0 ∈ N such that the matrix 1

|Yn|�Yn,α(z) is invertible for all n > n0. Then we can
write

1

|Yn| ‖v
(n)‖1 � 1

|Yn|

∥∥∥∥∥
(

1

|Yn|�Yn,α(z)

)−1
∥∥∥∥∥

∞,1

‖w(n)‖∞.

From lemma 2.3 and the relation ‖A‖∞,1 � |Yn|‖A‖2,2, A is a operator acting on C
|Yn|, we

conclude that the operator norm in the inequality above is bounded by |Yn|C for some C > 0.
Finally, let us look on the norm ‖w(n)‖∞: the first term of (w(n))y converges to zero uniformly
w.r.t. y as n → ∞ (recall that σ is bounded) and hypothesis (3.4) yields that remaining two
terms go to zero as well. �
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Figure 1. The dependence of eigenvalues of HY,α on the number of point potentials N for γ =
0.5 and the ring graph with R = 10. The dotted lines are the exact eigenvalues E0 = −0.0655,

E1 = −0.0524 and E2 = −0.0207.

4. Soft ring graphs

Let us now pass to examples. The first class of graphs to which we apply the approximation
developed in section 3 is rings, both full or open. Since the spectral properties of Hamiltonians
with interaction supported by these ring graphs were already explored in the paper [ET]—see
also the three-dimensional analogue discussed earlier in [AGS]—this gives us an opportunity
to compare the approximation with the ‘exact’ results, in particular, to assess the convergence
rate of the approximation.

Consider a circle � := {x ∈ R
2 : |x| = R} with the radius R > 0 and let γ be a function

from � to R such that γ (x) = γχ[0,2π−θ](ϕ), where x = (R, ϕ), γ > 0 and 0 � θ < 2π .
The Schrödinger operator with the δ interaction supported by � given formally by (1.1) will
be denoted by Hγ,R; it can be given meaning in either of the two ways described in section 2.
The spectrum and eigenfunctions are found easily in the full ring case, θ = 0, when Hγ,R

is reduced by the angular momentum subspaces. Every eigenstate except the ground state is
twice degenerate. In contrast, for a cut ring, θ > 0, the spectrum is simple; the problem can
be solved numerically by the mode-matching method [ET].

We start the presentation of the numerical results with the full ring. First, we put R = 10
and γ = 0.5. The discrete spectrum of Hγ,R consists of three eigenvalues, the ground
state corresponds to the angular momentum l = 0, the other two correspond to l = ±1,±2,
respectively, and they are twice degenerate; the number of eigenvalues is given by the inequality
γR > 2|l|. The choice of the approximating point-potential operators HYn,α is obvious—N
point potentials are spread regularly spaced all over the circle and the coupling constant α

equals N/(2πRγ ). The task of finding the eigenvalues E of HYn,α means to solve the implicit
equation

det �Y,α(E) = 0. (4.1)

We plot the eigenvalues of HY,α as N = |Y | increases in figure 1.
In the case of a stronger interaction, γ = 1, one gets a similar picture, just the number

of levels rises to five, see figure 2. Note that the convergence of eigenvalues is slower than it
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Figure 2. The dependence of eigenvalues of HY,α on the number of point potentials N for
γ = 1 and the ring graph with R = 10. The dotted lines are the exact eigenvalues E0 = −0.253,

E1 = −0.243, E2 = −0.21, E3 = −0.159 and E4 = −0.0881.
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∆ 
E)

Figure 3. The dependence of the error on the number of point potentials N in the logarithmic
scale. The dotted line corresponds to R = 10 and γ = 1 and the solid line corresponds to R = 10
and γ = 0.5.

is for the previous system. To estimate the rate of convergence, we calculate the difference
between the exact eigenvalue and the eigenvalue computed using the approximation. The
result is shown in figure 3; we observe that the aforementioned difference decays roughly as
N−a with a being less than 1.

The approximation by point-potential Schrödinger operators allows us to easily find the
eigenfunctions. By [AGHH, theorem II.4.2], they can be written as a linear combination of
the free Green functions:

ψ0(x) =
∑
y∈Y

cyGk0(x − y) (4.2)
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Figure 4. A detail of the wavefuction near the intersection of the circle and one of the nodal lines.
It is the wavefunction of the third excited state (l = 3) for R = 10, γ = 5 and |Y | = 100.
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Figure 5. A detail of the wavefunction of the third excited state (l = 3) for R = 10, γ = 5 and
|Y | = 100.

where k2
0 is the eigenvalue, i.e. det �Y,α

(
k2

0

) = 0, and c is the solution to �Y,α

(
k2

0

)
c = 0. The

eigenfunctions obtained in this way behave as one expects: they decrease exponentially if
moving transversally away from the circle, and for l > 0 they copy a sine function if moving
along the circle. A closer inspection of the eigenfunctions (4.2) shows, of course, a logarithmic
peak at the site of each point potential, as figures 4 and 5 demonstrate. In our opinion, the
contributions to energy coming from these spikes are responsible for the slow convergence of
the approximation.

Next, we consider an open ring, θ = π/3, i.e. one sixth of the perimeter is missing.
For example, the fifth excited state for R = 10 and γ = 1 has the energy E5 = −0.151,
the corresponding eigenfunction is shown in figure 6. The approximation by 1000 point
potentials yields the energy E′

5 = −0.116 and the corresponding eigenfunction shown in
figure 7.
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Figure 6. The wavefunction of the fifth excited state of Hγ,R for R = 10, γ = 1 and θ = π/3.
The solid line represents the ring �.

Figure 7. The wavefunction of the fifth excited state of HY,α for |Y | = 1000, which approximates
the fifth excited state of Hγ,R from figure 6. The solid lines represent the nodal lines, the dotted
line represents the graph �.

5. Star-shaped graphs

Another class of leaky-graph systems to which we will apply the approximation by point-
interaction Hamiltonians is the star-graph Hamiltonians where � is a collection of segments
coupled at a point. In distinction from the previous section no ‘direct’ method to solve the
problem is available in this case, and thus the approximation represents the only way to obtain
a numerical description of the eigenvalues and eigenfunctions.

First we want to make a remark about the finiteness of such graphs. Our interest concerns
primarily infinite stars in which the arms are halflines, in particular, since they support localized
states despite the fact that the graph geometry would allow escape to infinity. On the other
hand, the above approximation result applies to finite graphs only because it requires

∫
γm to

be finite. Nevertheless, the result can be used, due to the fact that the infinite star Hamiltonian
is approximated, again in the strong resolvent sense, by a family of operators with cut-off
stars. To justify this claim, it is sufficient to realize that the corresponding family of quadratic
forms is by (2.3) monotonic and bounded from below, so that theorem VIII.3.11 of [Ka]
applies.

Let us thus discuss in the beginning what can be derived analytically about infinite star
graphs. Given an integer N � 2, consider an (N −1)-tuple β = {β1, . . . , βN−1} of positive
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numbers such that

βN := 2π −
N−1∑
j=1

βj > 0.

Denote ϑj := ∑j

i=1 βj , where we put conventionally ϑ0 = 0. Let Lj be the radial halfline,
Lj := {x ∈ R

2 : arg x = ϑj }, which is naturally parametrized by its arc length s = |x|. The
support of the interaction is given by � ≡ �(β) := ⋃N−1

j=0 Lj .
The star-graph Hamiltonians HN(β) are defined formally by (1.1) as Schrödinger operators

with an attractive potential supported by the graph � and with the coupling constant γ , and
the proper meaning is given to this operator in the way described in section 2.

Remark 5.1. Properties of the operator HN(β) certainly depend on the order of the angles
in β. However, the operators obtained from each other by a cyclic permutation are obviously
unitarily equivalent by an appropriate rotation of the plane.

Let us mention two trivial cases:

Example 5.2. (a) H2(π) corresponding to a straight line can be written as hγ ⊗I +I ⊗(−∂2
y

)
,

where hγ = −∂2
x − γ δ(x) is the one-centre point-interaction Hamiltonian [AGHH] on L2(R).

Consequently, its spectrum is purely a.c. and equal to [−γ 2/4,∞).
(b) H4(βs) with βs = {

π
2 , π

2 , π
2

}
again allows separation of variables being hγ ⊗I +I ⊗hγ .

Hence the a.c. part of σ(H4(βs)) is the same as above, and in addition, there is a single isolated
eigenvalue −γ 2/2 corresponding to the eigenfunction (2γ )−1 e−γ (|x|+|y|)/2.

5.1. The essential spectrum

First we note that the essential spectrum of HN(β) does not extend below that of H2(π)

corresponding to a straight line.

Proposition 5.3. inf σess(HN(β)) � − γ 2

4 holds for any N and β.

Proof. By Neumann bracketing. We decompose the plane into a finite union

P ∪

⋃

j

(Sj ∪ Wj)


 (5.1)

where Wj is a wedge of angle βj , Sj is a halfstrip centred at Lj which is obtained by a
Euclidean transformation of R

+ × [�, �] and P is the remaining polygon containing the vertex
of �. Imposing Neumann boundary conditions at the common boundaries, we get a lower
bound to HN(β) by an operator which is a direct sum corresponding to the decomposition
(5.1). The wedge parts have an a.c. spectrum in R

+ while the polygon has a purely discrete
spectrum. Finally, the halfstrip spectrum is a.c. again and consists of the interval [ε(�),∞),
where ε(�) are the lowest eigenvalues of

(−∂2
y −γ δ(y)

)
N

on L2([−�, �]). It is straightforward
to see that to any η < −γ 2/4 there is � such that ε(�) > η, and since the decomposition (5.1)
can be chosen with � arbitrarily large, the proof is finished. �

In fact, the essential spectrum is exactly that of a straight line.

Proposition 5.4. σess(HN(β)) = [−γ 2/4,∞) holds for any N and β.
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Proof. In view of the previous proposition, it is sufficient to check that σess(HN(β)) ⊃
[−γ 2/4,∞). Given a function φ ∈ C∞

0 ([0,∞)) with ‖φ‖ = 1 and φ(r) = 1 in the vicinity
of r = 0, we construct

ψn(x;p, xn) := 1

n
√

2γ
φ

(
1

n
|x − xn|

)
e−γ |x(2)|/2 eipx(1)

with p � 0 and x = (x(1), x(2)), where the points xn can be chosen, e.g., as (n2, 0). It is easy
to see that the vectors ψn → 0 weakly as n → ∞ and that they form a Weyl sequence of
HN(β) referring to the value −γ 2/4 + p2. This yields the desired result. �

5.2. The discrete spectrum

The first question naturally concerns the existence of isolated eigenvalues. It follows from
two observations of which one is rather simple.

Proposition 5.5. HN(β) � HN+1(β̃) holds for any N and angle sequence β̃ ={
β1, . . . , βj−1, β̃

(1)
j , β̃

(2)
j , βj+1, . . . , βN−1

}
with β̃

(1)
j + β̃

(2)
j = βj .

Proof. It follows directly from the definition by the quadratic form (2.3). �

On the other hand, the second one is rather nontrivial. It has been proved in [EI] for a
wide class of piecewise continuous non-straight curves which includes, in particular, a broken
line.

Proposition 5.6. σdisc(H2(β)) is nonempty unless β = π .

Combining these two results with the minimax principle (recall that HN(β) is bounded below)
we arrive at the following conclusion.

Theorem 5.7. σdisc(HN(β)) is nonempty except if N = 2 and β = π .

Next one has to ask how many bound states does a star graph support. The answer depends
on its geometry. There are situations, however, where their number can be large.

Theorem 5.8. Fix N and a positive integer n. If at least one of the angles βj is small enough,
card(σdisc(HN(β))) � n.

Proof. In view of proposition 5.5 it is again sufficient to check the claim for the operator H2(β).
Choose the coordinate system in such a way that the two ‘arms’ correspond to arg θ = ±β/2.
We employ the following family of trial functions

�(x, y) = f (x)g(y) (5.2)

supported in the strip L � x � 2L, with f ∈ C2 satisfying f (L) = f (2L) = 0, and

g(y) =
{

1 |y| � 2d

e−γ (|y|−2d) |y| � 2d

with d := L tan(β/2). Let us ask under what conditions the value of the shifted energy form

q[�] := ‖∇�‖2 − 2γ

cos(β/2)
‖f ‖2 +

γ 2

4
‖�‖2

is negative. Since ‖g‖2 = 4d + γ −1 and ‖g′‖2 = γ , this is equivalent to

‖f ′‖2

‖f ‖2
< γ 2 2 sec β

2 − γ d − 5
4

1 + 4γ d
.
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By the minimax principle for the system there will be at least n isolated eigenvalues provided(
πn

d
tan

β

2

)2

= inf
M⊥

n

sup
Mn

‖f ′‖2

‖f ‖2
< γ 2 2 sec β

2 − γ d − 5
4

1 + 4γ d

where Mn means an n-dimensional subspace in L2([L, 2L]), i.e., if

n2 <
γ 2d2

π2

(
cot

β

2

)2 2 sec β

2 − γ d − 5
4

1 + 4γ d
.

Now one should optimize the rhs w.r.t. γ d, but for a rough estimate it is sufficient to take a
particular value, say γ d = sec β

2 − 5
8 which yields

n <
1

16π
cot

β

2

(
8 sec β

2 − 5
)3/2

(
8 sec β

2 − 3
)1/2 (5.3)

it is obvious that the last inequality is for any fixed n satisfied if β is chosen small
enough. �

Corollary 5.9. Independently of β, card (σdisc(HN(β))) exceeds any fixed integer for N large
enough.

Remark 5.10. The estimate used in the proof also shows that the number of bound states for
a sharply broken line is roughly proportional to the inverse angle,

n � 33/2

8π
√

5
β−1

as β → 0. This is the expected result, since the number is given by the length of the effective
potential well which exists in the region where the two lines are so close that they roughly
double the depth of the transverse well.

5.3. The Birman–Schwinger approach

Now we are going to show how the spectral problem for the operators HN(β) can be
reformulated in terms of suitable integral operators. We will employ the resolvent formula for
measure perturbations of the Laplacian derived in [BEKŠ]. Note that this technique was used
in [EI] to derive a result which implies our proposition 5.6.

Since the operators HN(β) are defined by the quadratic form (2.3) they satisfy the
generalized Birman–Schwinger principle. If k2 belongs to the resolvent set of HN(β) we
put Rk

γ,� := (HN(β) − k2)−1. We already know the Krein-like formula for the resolvent from
theorem 2.1, here it has the form

Rk
γ,� = Rk

0 + γRk
dx,m

[
I − γRk

m,m

]−1
Rk

m,dx

with m denoting the Dirac measure on �. One can express the generalized BS principle as
follows [BEKŠ]:

Proposition 5.11. dim ker(HN(β) − k2) = dim ker
(
I − γRk

m,m

)
for any k with Im k > 0.

Consequently, the original spectral problem is in this way equivalent to finding solutions
to the equation

Rκ
γ,�φ = φ (5.4)
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in L2(�), where Rκ
γ,� := γRiκ

m,m. Furthermore, in analogy with [AGHH, sec II.1] one expects
that a non-normalized one corresponding to a solution φ of the above equation is

ψ(x) =
∫

�

Giκ(x−x(s))φ(s) ds

a proof of this claim can be found in the sequel to the paper [Po].

5.4. Application to star graphs

Let us now see what equation (5.4) looks like for graphs of the particular form considered
here. Define

dij (s, s
′) ≡ d

β

ij (s, s
′) =

√
s2+ s ′2− 2ss ′ cos |ϑj − ϑi | (5.5)

with ϑj − ϑi = ∑j

l=i+1 βl , in particular, dii(s, s
′) = |s − s ′|. By Rκ

ij (β) = Rκ
ji(β) we denote

the operator L2(R+) → L2(R+) with the kernel

Rκ
ij (s, s

′;β) := γ

2κ
K0(κdij (s, s

′))

then (5.4) is equivalent to the matrix integral-operator equation
N∑

j=1

(
Rκ

ij (β) − δij I
)
φj = 0 i = 1, . . . , N (5.6)

on
⊕N

j=1 L2(R+). Note that the above kernel has a monotonicity property,

Rκ
ij (β) > Rκ

ij (β
′) (5.7)

if |ϑj − ϑi | < |ϑ ′
j − ϑ ′

i |. This has the following easy consequence:

Proposition 5.12. Each isolated eigenvalue εn(β) of H2(β) is an increasing function of β in
(0, π).

Proof. Note first that the eigenfunction related to εn(β) is even with respect to the interchange
of the two halflines. Without loss of generality we may assume that arg Lj = (−1)j−1β/2.
The odd part of H2(β) then corresponds to the Dirichlet condition at x = 0. The spectrum of
this operator remains the same if we change arg L1 to π − β/2. Removing then the Dirichlet
condition, we get the operator H2(π) with inf σ(H2(π)) = inf σess(H2(β)), so by the minimax
principle no eigenfunction of H2(β) can be odd.

On the symmetric subspace the diagonal matrix element of the matrix integral operator
Rκ(β) equals

(φ,Rκ(β)φ) = 2
(
φ1,Rκ

11φ1
)

+ 2
(
φ1,Rκ

12(β)φ1
)

with the first term on the rhs independent of β. Next we note that {Rκ(β)} is a type (A)
analytic family around any β ∈ (0, π); the derivative d

dβ
Rκ(β) is a bounded operator or the

form
( 0 Dβ

Dβ 0

)
where Dβ has the kernel

Dβ(s, s ′) = −γ

2
K1

(
κd

β

12(s, s
′)
) ss ′ sin β

d
β

12(s, s
′)

< 0.

At the same time {Rκ(β)} is a type (A) analytic family w.r.t. κ around any κ ∈ (0,∞) and the
corresponding derivative is a bounded operator

( R′
11 R′

12
R′

12 R′
22

)
with the kernel

R′
ij (s, s

′) = − γ

2κ2

[
K0

(
κd

β

ij (s, s
′)
)

+ κd
β

ij (s, s
′)K1

(
κd

β

ij (s, s
′)
)]

< 0.
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Figure 8. The dependence of the discrete spectrum of HY,α on the angle β for the symmetric
two-arm star �1. The dotted line represents the threshold −γ 2/4.

Let φβ = (φ
β

1

φ
β

1

)
be a normalized eigenvector of Rκ(β) corresponding to the eigenvalue

λ(κ, β) = (φβ,Rκ(β)φβ). By the Feynman–Hellmann theorem we find
d

dβ
λ(κ, β) = 2

(
φ

β

1 ,Dβφ
β

1

)
< 0

and similarly d
dκ

λ(κ, β) < 0. The solution κ = κ(β) of the implicit equation λ(κ, β) = 1 thus
satisfies

d

dβ
κ(β) = −dλ/dβ

dλ/dκ
< 0

and, consequently, the eigenvalue −κ(β)2 is increasing w.r.t. β. �

5.5. Numerical results

Having explained analytically how the discrete spectrum of HN(β) depends on the number
of arms and the angles β, we employ now the approximation by point-potential Schrödinger
operators to obtain the numerical results for cut-off stars which illustrate the above conclusions.

Consider a two-arm star graph �1 with both arms of the same length, L1 = L2 = 300,
and put γ = 0.1. As we already know, the threshold of the continuous spectrum of H2(β) is
−γ 2/4 = −0.0025. We approximate H2(β) by point-potential Schrödinger operator HY,α that
has one potential at the centre of the star graph and 200 equidistant point potentials on each arm.
Only the lower part of the discrete spectrum of HY,α approximates the discrete spectrum of the
star-graph operator, while the upper part corresponds to the interval [−γ 2/4, 0] ⊂ σess(H2(β)).
Therefore, only the states with energy below the threshold may be indeed understood as the
approximation of the bound states of H2(β).

The main result of the analytic argument presented above was the dependence of the
eigenvalues on the angle β: if β decreases, the eigenvalues decrease and their number grows.
The discrete spectrum of HY,α for β varying is in good agreement with this fact as figure 8
illustrates. The eigenvalue crossings we observe are actual, which is a consequence of the
symmetry of the graph �1. For a non-symmetric graph the crossings become avoided. To
demonstrate it in figure 9, we slightly change the length of one arm, L2 = 306, while the
other parameters are preserved. Also the setting of the point potentials approximating the new
graph �2 stays the same, up to extra four potentials added on the longer arm.
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Figure 9. The dependence of the discrete spectrum of HY,α on the angle β for the non-symmetric
two-arm star �2. The dotted line represents the threshold −γ 2/4.

Figure 10. The wavefunction of the ground state of HY,α, E0 = −0.612, which approximates the
ground state of H6(β) with β being the 5-tuple of π/3 and γ = 1. The contours correspond to
logarithmically scaled horizontal cuts, the dotted lines represent the graph �.

Expression (4.2) again yields the eigenfunctions in the form of a sum of the free Green
functions. We limit ourselves to a pair of examples: the ground state of H6(β) in figure 10
and the third excited state of H10(β) in figure 11. The length of the cut arms is 30, in the
former case the approximating operator HY,α has 601 point potentials and in the latter case
the number of point potentials is 1001. We see, in particular, that for N large enough HN(β)

may have closed nodal lines; it is an interesting question what is the minimal N for which this
happens.

6. L2-approach to resonances

Our last example, as indicated in the introduction, concerns the situation when � is a single
infinite curve; we want to see whether resonances in the scattering of states propagating along
� may be detected by inspecting the spectrum of the cut-off problem with the curve of finite
length which is a parameter to be varied.

Consider a curve � from figure 12: its central part consists of three segments of a circle
with the radius R = 10 and it has two infinite ‘legs’. The distance between two closest points
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Figure 11. The wavefunction of the third excited state of HY,α, E3 = −0.265. It approximates
the third excited state of H10(β) with β being the 9-tuple of π/5 and γ = 1. The convention is the
same as above, the solid line is the nodal line.

Figure 12. An example of the curve �: R = 10 and � = 1.9.
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Figure 13. The dependence of the discrete spectrum of the HY,α on the length L for R = 10, γ = 1
and � = 1.9.

of the curve, i.e. the bottleneck width, is denoted by �. The coupling constant γ equals 1.
We cut the ‘legs’ of the graph to a finite length L and we plot the eigenvalues computed using
the approximation for L varying. The number of point potentials involved in HY,α is chosen
so that the distance between every two adjacent points equals 0.3. For small values � = 1.9
and � = 2.9 the tunnelling effect occurs and we can see the plateaux in figures 13, 14, which
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Figure 14. The dependance of the discrete spectrum of HY,α on the length L for R = 10, γ = 1
and � = 2.9.
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Figure 15. The dependence of the discrete spectrum of HY,α on the length L for R = 10, γ = 1
and � = 5.2.

indicate the existence of resonances; the width of the avoided crossings increases with � as
expected. On the other hand, for a more open curve, � = 5.2, we get a different picture,
where the plateaux are absent (see figure 15).

The second graph type we are interested in is simple bends, in terms of section 5 it
is a two-arm star �(β). As we have already mentioned, avoided eigenvalue crossings are
not expected here because the transport along the graph arm involves a single transverse
mode—this is confirmed in figure 16, which shows the results of the cut-off method
for β = π/4.

Finally to illustrate that resonances may also result from multiple reflections rather than
from a tunnelling, we apply the cut-off method to graphs which are of stair-type, or Z-shaped.
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Figure 16. The dependence of the discrete spectrum of HY,α on the arm length L for the angle
β = π/4 and γ = 1.
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Figure 17. The dependence of the discrete spectrum of HY,α on the arm length L for R = 10,
θ = 0.32π and γ = 5.

They consist of three line segments: the central one has a finite length R, i.e. the ‘height’ of
the stair, the other two are parallel (cut-off) halflines. If the angle θ between the segments is
less than π/2 the term Z-shaped is more appropriate. The results for R = 10 and γ = 5 are
plotted in figures 17 and 18. In the former case the stair is ‘skewed’ to θ = 0.32π , in the latter
we have θ = π/2; the distance between the point potentials of the approximating operator
HY,α equals 0.1. We find avoided crossings, however, they are very narrow for θ = 0.32π and
barely visible in the right-angle case; this observation can be naturally understood in terms of
the reflection probability through a single bend—compare with the angle dependence of the
spectrum in figure 8.
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Figure 18. The dependence of the discrete spectrum of HY,α on the arm length L for R = 10,
θ = π/2 and γ = 5.
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